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Abstract
Cavity expansion is a method for modeling the penetration of an axisymmetric or wedge-
shaped solid body—a penetrator—into a target by using analytic expressions to capture
the effects of the target on the body. Cavity expansion has been implemented as a third-
party library (CavityExpansion) that can be used with explicit, transient dynamics codes.
This document describes the mechanics of the cavity expansion model implemented as a
third-party library. This document also describes the applications interface to CavityEx-
pansion. A set of regression tests has been developed that can be used to test the imple-
mentation of CavityExpansion in a transient dynamics code. The mechanics of these tests
and the expected results from the tests are described in detail.
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CavityExpansion: A Library for Cavity
Expansion Algorithms, Version 1.0

1 Introduction
Cavity expansion is a method for modeling the penetration of an axisymmetric or wedge-
shaped solid body (a penetrator) into a target by using analytic expressions to capture the
effects of the target on the penetrator. The advantage of this approach is that the target
does not need to be discretized. The characteristics of the target are captured by
coefficients in an equation that is used to determine a pressure load on the penetrator. The
pressure load at a point on the penetrator depends on the geometry of the penetrator at that
point and the velocity of that point.

Cavity expansion has been implemented as a third-party library, named CavityExpansion,
that can be used in explicit, transient dynamics codes. This document describes the
implementation of the cavity expansion functionality and the applications interface to
CavityExpansion. This document also discusses verification and validation of
CavityExpansion as a third-party library.

The theoretical background for cavity expansion can be found in References 2, 4, 5, 6, 7,
and 9. References 10, 11, 12, and 16 describe how cavity expansion has been implemented
as a specialized boundary condition in two widely used finite element codes, Pronto3d
[13] and ABAQUS Explicit [1], and used for comparison of computational results with
experiments.

Highlights of this document follow:

• Section 2 describes the implementation of the current functionality in
CavityExpansion. Section 2.1 provides the basic information required for the
numerical implementation of cavity expansion. Sections 2.2 and 2.3 discuss the two
special cases of cavity expansion theory, spherical and cylindrical, respectively.
Section 2.4 explains how the basic theory for cavity expansion can be enhanced for a
numerical implementation by accounting for what are called free-surface effects.

• Section 3 describes the applications interface for CavityExpansion.

• Section 4 gives a complete description of the set of verification problems used to test
the current functionality in CavityExpansion.

• Section 5 references a set of validation problems for cavity expansion.

• Appendix A gives the basic algorithm flow used for the implementation of cavity
expansion.

The CavityExpansion library is currently used by Alegra [3] and Presto[8].



2 Implementation
This section describes the current numerical implementation of cavity expansion
capabilities in the third-party library CavityExpansion.

2.1 Pressure Equation
A typical penetrator and target are shown in Figure 2.1.

Figure 2.1. Axisymmetric penetrator normal to target surface.

The pressure at some point on the surface of the penetrator is determined from cavity
expansion theory by a quadratic equation of the form

, (1)

where v is a velocity of a particle in the target. The particle is in contact with the point of
interest on the surface of the penetrator. The three coefficients in Equation (1), , , and

, reflect the properties of the target. For a given target material, these three parameters

are usually determined from experiments. Cavity expansion is typically used for
axisymmetric bodies, but it can also be applied to wedge-shaped bodies.

In a numerical implementation of cavity expansion, the axisymmetric body (penetrator) is
modeled with a mesh. The surface of the body where the effects of cavity expansion occur
is modeled by a set of faces, and outward normals can be calculated on these faces. The
axis of revolution of the body can be defined by a minimum of two points on the axis. If
the body does not undergo significant bending, two points are sufficient to model the
location of the axis of revolution of the body as the body impacts a target. If, however, the

Target

Penetrator

Axis of Revolution

p c0 c1v c2v
2

++=

c0 c1

c2
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body undergoes significant bending, the axis of revolution should be broken into a series
of segments (each segment defined by two points) to provide accurate modeling.

For problems involving cavity expansion, it is necessary to specify the location and depth
of the target relative to the penetrator. For some problems, the depth of the target is finite;
for other problems the target may be a semi-infinite medium. The bounds of the target are
referred to as the free surfaces. The convention is to have these surfaces normal to one of
the global coordinate axes—X, Y, or Z. The normal to the top surface is in the positive
direction of one of the global coordinate axes. The surfaces are then specified by points on
the global axis normal to the surfaces of the target. For example, suppose the normal to the
top surface of the target is in the +z-direction and the target is 10 m thick. The top of the
target lies in the xy-plane; the bottom of the target is at  m. For this particular

problem, the top free surface would be specified as , and the bottom free surface

would be specified as . For a semifinite medium, it is possible to specify a large-
enough depth so that the penetrator never leaves the target during the computational period
of interest. For the CavityExpansion library, the z-axis has been chosen as the normal to
the target for all problems. The model for any penetrator can be easily oriented to account
for this convention.

The model of the body (with points defining the axis of revolution) and the specification of
the target provide the basic information needed for an analysis using a cavity expansion
method. The velocity term in Equation (1) can be computed by one of two methods,
spherical expansion or cylindrical expansion. These two methods make different
assumptions about the motion of particles in the target. For spherical cavity expansion, it
is assumed that target particles contacting the surface of the penetrator move normal to the
surface of the penetrator. For cylindrical cavity expansion, it is assumed that target
particles contacting the surface of the penetrator move in a direction that is normal to the
axis of the penetrator. These two types of target particle motion are shown in Figure 2.2.

Figure 2.2. Target particle motion for spherical and cylindrical expansion.

z 10–=

z 0=

z 10–=

penetrator surface at t

penetrator surface at
t + dt

penetrator
axis

target
particle

nc

ns

Vp = velocity of target particle at
           penetrator surface
11



In Figure 2.2, the normal for spherical expansion is denoted as , and the normal for

cylindrical expansion is denoted as .

Section 2.2 discusses the details of computing v using spherical expansion theory, and
Section 2.3 discusses the details of computing v with cylindrical expansion theory.

When cavity expansion is implemented as a numerical scheme, it is necessary to account
for the fact that the surface of the penetrator is no longer a smooth surface but a series of
planar facets. These facets could be shell elements or the faces of hexahedral or tetrahedral
elements. In the next sections concerning the implementation of spherical and cylindrical
expansion, the effects of the discretization of the surface are noted.

2.2 Spherical Expansion
For the case of spherical cavity expansion, consider the geometry shown in Figure 2.3.

Figure 2.3. Spherical radii calculations.

The axis of revolution of the body is defined by points and . (Because the points can

be represented by vectors, we will denote them as vector quantities.) There are two
quantities of interest for any point on the surface of the penetrator. The first quantity of

interest is the normal to the surface of the penetrator at ; denote this normal as . The

second quantity of interest is the spherical radius for the point . The spherical radius

for  is the distance from  to the axis of revolution of the body along the vector .

This distance will be important for calculations of surface effects that are discussed in
Section 2.4.

nc

ns

Point on axis of revolution p2

Point on axis of revolution p1

pb

p3

Vs

Vc

θ

p1 p2

pb

pb Vs

pb ds

pb pb Vs
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To compute the spherical distance, first compute a vector A that lies along the axis of
revolution and extends from point  to point .

(2)

Points  and  can be any two noncoincident points that lie on the axis of revolution.

The point should be toward the nose of the body, and the point should be toward the

aft end of the body.

Now compute a vector B from point  to .

(3)

If a is the unit vector corresponding to A, then the point  can be computed from

. (4)

Point  and point  define a vector that is orthogonal to the axis of revolution of the

penetrator. Once point is computed, it is possible to compute the distance, , from

to point . By using , it is possible to compute the vector , which is the cylindrical

normal through  (Figure 2.3). If  is the unit vector lying along , and  is the unit

vector lying along , the value for the spherical distance  can be computed from

(5)

provided that  The condition  may be violated at the tip of the

penetrator as the surface of the body comes close to the axis of revolution. This situation is
easy to detect, and one can use a user-specified value for the radius at the tip of the body to
overcome the problem encountered with the above calculations. For a spherical expansion
problem, a user-specified tip radius would have the effect of rounding the tip of a sharp
nose, such as an ogival nose.

Note that in the preceding derivation, it is assumed that lies in the plane defined by the

vector and the vector B. For the discretized model of the penetrator, the vector does

NOT necessarily lie in the plane defined by and B. The following section describes the

modified procedure to obtain  appropriate for the discrete penetrator model.

The above calculations offer a means of determining the spherical distance  associated

with the spherical vector . The spherical vector  is determined from the discretized

p2 p1

A p1 p2–=

p2 p1

p1 p2

p2 pb

B pb p2–=

p3

p3 a B⋅( )a p2+=

p3 pb

p3 dc p3

pb p3 Vc

pb nc Vc ns

Vs ds

ds dc nc ns⋅( )⁄=

nc ns 0.≠⋅ nc ns 0≠⋅

Vs

Vc Vs

Vc

ds

ds

Vs Vs
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geometry in the finite element model for the penetrator. Consider the discretized profile of
a penetrator shown in Figure 2.4.

Figure 2.4. Discretized surface of penetrator.

In the profile in Figure 2.4, the line representing the surface of the penetrator has been
broken into straight-line segments. These segments would result from slicing through
hexahedral or tetrahedral elements with a plane that passes through the body of revolution.
Consider the case of a quadrilateral face (Figure 2.5) arising from hexahedral elements
used in a cavity expansion model.

Figure 2.5. Quadrilateral face on surface of penetrator.

For a quadrilateral face, an average surface (spherical) normal is calculated. To calculate
this average normal, a vector  is computed from node 1 to node 3, and a second vector

surface of penetrator

element 1

element 2
n2

pb

n1

node 1

node 2

node 3

node 4
V1

V2

V1
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is computed from node 2 to node 4. The cross product is used to compute the

average normal for the surface. This average normal is used for the spherical normal.

Consider the point  shown in Figure 2.4. Let point  correspond to a node, node i,

shared by elements 1 and 2. For element 1, there will be a single normal, but four velocity
vectors (one at each node). At node i for element 1, the velocity v used in Equation (1) is

, (6)

where  is the spherical normal for element 1 and  is the velocity vector at node i. For

a quadrilateral face, there are four pressures calculated based on Equation (6). These
pressures are then used to calculate nodal point forces for an element based on a
nonuniform pressure distribution. At a given node on the mesh, the nodal point force is the
resultant of the nodal point loads summed from surrounding elements. Nodal forces from
element 2 would also be summed into the nodal forces at .

The discretization of the surface of the quadrilateral requires that a different method be
used in the calculation of  from that given in Equation (5). Figure 2.6 shows the

discretized cross section of a penetrator.

Figure 2.6. Cross section of penetrator.

The vector  does not lie in the same plane as that defined by the vector  and the axis

of revolution of the body. The vector  only approximates the normal at . Since we

want the spherical distance to the point on the body , it becomes necessary to project the

unit vector lying along , which is , onto the plane defined by , the cylindrical

normal, and A, the axis of revolution of the body. If the unit vector lying along A

V2 V1 V2×

pb pb

v vi ns⋅=

ns vi

pb

ds

surface
of penetrator

discretized
section

Vc

Vs

pb

Vs Vc

Vs pb
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Vs ns Vc
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(Equation (2)) is defined as a, then the following operations will produce a good
approximation of  that will get better as the penetrator mesh is refined.

(7)

(8)

(9)

(10)

In the above equations, Equation (7) through Equation (10),  is the angle between a and

 projected onto the plane defined by  and a. The angle  is shown in Figure 2.3.

Similar to the previous calculations for , the above equations break down for nodes

within a small distance of the tip. This problem can be corrected for the above calculations
by again specifying a tip radius.

We now have sufficient information to compute the pressure for spherical cavity expansion
for any node on the surface of a penetrator where cavity expansion effects are specified.
For the case of spherical cavity expansion, the key equations are Equation (1) and
Equation (6). If, in Equation (6), the value for v is less than zero (the velocity is in the
opposite direction of the outward normal to the body), then the value for the pressure is set
to zero.

2.3 Cylindrical Expansion
For the case of cylindrical expansion, again consider the geometry shown in Figure 2.3.
The point , which lies on a line that passes through the point  and is normal to the

axis of revolution of the body, can be calculated by using Equations (2) through (4). Once
 is known, it is possible to calculate the vector  (and the related unit vector ) and

the distance . The calculations break down for a point near the axis of revolution of the

body. This is similar to the situation encountered in spherical expansion. If a point is
encountered near the axis of revolution, a user-defined radius can be used at this point. If
the tip of the penetrator is a hemispherical section (defined by a single radius of
curvature), it is possible to use a user-specified value for a point at (or near) the tip of the
penetrator that is equal to the radius of the hemispherical section. This gives continuity for
the value of the cylindrical radius for all points in the hemispherical section.

The velocity quantity in Equation (1) for cylindrical expansion involves both the spherical
and cylindrical vectors,  and . For a node i on a quadrilateral face, the velocity

component in the direction of the spherical normal is first computed. Designate this dot
product as .

ds

θcos ns a⋅=

θ ns a⋅acos=

dc ds θsin=

ds dc θsin( )⁄ for θ 0≠sin,=

θ
ns nc θ

ds

p3 pb

p3 Vc nc

dc

ns nc

vis
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(11)

The quantity is then divided by the dot product . The quantity v in Equation (1)

is defined as

. (12)

For cylindrical expansion, v is the radial expansion velocity component of the target at a
point . We can better understand the physical significance of the radial velocity by

considering the quantities shown in Figure 2.7. In this figure, the magnitude of the velocity
at point  in the direction normal to the surface of the penetrator is

, (13)

where  is the angle shown. The magnitude of the radial velocity of the material particle,

, is

. (14)

Figure 2.7. Relation between cylindrical and spherical velocities.

Equation (14) breaks down when , which implies a blunt end to the penetrator.
At a blunt end, there would be no unique direction for radial motion with respect to the
axis of revolution. For this situation, the pressure is simply set to zero in Equation (1). (An
analyst could use the spherical expansion technique for the “blunt” section of the body.)
The pressure is also set to zero if the dot product between the velocity at a point on the
body and the spherical normal is less than zero.

We now have sufficient information to compute the pressure for cylindrical cavity
expansion for any node on the surface of a penetrator. For the case of cylindrical cavity

vis vi ns⋅=

vis nc ns⋅

v vis nc ns⋅( )⁄=

pb

pb

vs V p ns⋅ V p φsin= =

φ
vc

vc V p φtan vs φcos( )⁄= =

nc

ns

Vp

φ

φ

pb

surface of penetrator

inside volume of penetrator

φcos 0=
17



expansion, the key equations are Equation (1), Equation (11), and Equation (12). If, in
Equation (12), the value for v is less than zero (the velocity is in the opposite direction of
the cylindrical outward normal to the body), then the value for pressure is set to zero.

2.4 Free-Surface Effects
In some physical problems, the surface of a target may disintegrate easily near the impact
zone. The penetrator will go into the target for some distance before the target remains
intact and offers effective resistance to the penetrator. Cavity expansion in a finite element
code can be implemented to take into account these surface effects.

Currently, only a simple on-off surface effect is implemented.

Surface effects are incorporated by using the free surfaces of the target and a layer
definition. A single layer or several layers can reside inside the target, which is defined by
the top and bottom free surfaces. The relation of a single layer to the target’s free surfaces
is shown in Figure 2.8. The single layer in the figure could consist of several layers (not

Figure 2.8. Target free surfaces and layer.

necessarily contiguous) with different properties. For the examples presented in the
following section, we will assume a single layer resides within the target. In the
computations for cavity expansion, a check is first made to determine whether a node on
the surface of the penetrator lies within a layer. If the node lies outside of a layer, the
pressure is set to zero for that node. If the node lies within the layer, then computations are
made to determine a pressure derived from Equation (1).

If surface effects are important, information about the free surface is used to determine
whether a node on the penetrator is sufficiently far from the free surface for a pressure to
be applied according to Equation (1). For calculations of free-surface effects, consider the
penetrator shown in Figure 2.9. It has entered the target at an oblique angle. A detailed
example is presented for calculating the top free surface. Similar calculations will hold for
the effects of the bottom free surface. The detailed example uses the case of spherical
expansion. The same calculations for spherical expansion are easily generalized to the
case of cylindrical expansion.

surface normal
top free surface

bottom free surface

top layer

bottom layer

target
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Figure 2.9. Geometry relations for calculations of surface effects.

Consider the point on the surface of the penetrator for the case of spherical expansion.

Point is a distance r (spherical radius) from the axis of revolution of the penetrator. The

distance from  to the target surface as measured along the spherical normal to the

surface of the penetrator at  is l. If l and r satisfy the relation

, (15)

where is a scale factor that characterizes the surface effects for a particular target, then a

pressure will be calculated at  based on Equation (1). If Equation (15) is not satisfied,

then the pressure is set to zero. Equation (15) is a simple test to determine whether a point
on the body of the penetrator is far enough below the free surface of the target to have the
material above the point remain intact. The larger the value of , the farther a point on the

penetrator must be below the top free surface if the point is to have a pressure from cavity
expansion.

The scale factor  characterizes a critical ratio for . The value for  varies for

different materials. In subsequent sections, the scale factor  will be referred to as a

surface effect coefficient.

The distance l is quite easy to compute. Suppose that point  is located at .

The target normal for the top free surface is in the z-direction, and the top free surface is
located at . If the spherical normal at point is , then the distance

l is simply

, (16)
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for not equal to zero. The computation in Equation (16) is made only if is nonzero

and is positive. If is positive, the spherical normal at is pointing toward the top free

surface, and it makes sense physically to check for the effects of the top free surface. If
one of the other axes was normal to the top free surface, the values in Equation (16) would
be changed to reflect this fact.

As indicated previously, the detailed analysis presented above for calculating the surface
effects also applies to the case of cylindrical expansion. For the case of cylindrical
expansion, we would use the cylindrical radius at for r and compute l based on . The

detailed analysis presented above also applies to the effects of the bottom free surface
(with some sign changes).

nsz nsz

nsz pb

pb nc
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3 Application Programmers Interface
This section describes the Application Programmers Interface (API). Currently, only a
C++ interface is supported. A C and/or FORTRAN interface could easily be added in the
future. The library does not have any parallel support built into it. The parallelization is
left to the host code. All that is required is for the host code to “swap and add” the nodal
forces to give a parallel implementation. Since any parallel code MUST provide this
service for element assemblies, we have not added the coding in the library. There is no
limit to the number of CavityExpansion objects that can be constructed.

Rather than use the namespace feature of C++, we have chosen to use a naming
convention to avoid naming conflicts with the host code. The main-level object is named
CavityExpansion. All other objects and enumerations are named with the prefix “CE_”.
As long as the host code does NOT use “CE_” as a prefix for any of its objects, there
should not be any name conflicts.

All of the functions in the CavityExpansion library return an error code given by the
following enumeration:

CE_ERROR_CODE { NO_ERROR=0, INVALID_DATA, INTERNAL_ERROR };

The return error code should always be checked. As soon as the library detects an error, it
exits. This can leave the object improperly initialized or the return data invalid. If the
analysis is allowed to proceed after the library has returned an error code, the results are
unpredictable but guaranteed to be wrong.

3.1 Constructing a CavityExpansion Object
There is one general-purpose constructor for the CavityExpansion object. There is no
internal data needed for restart, so a general constructor can be used for restart as well.

The prototype for the CavityExpansion constructor is as follows:

CavityExpansion(
CE_TYPE Type,
int Number_Faces,
int Number_Nodes,
const int* Connectivity,
double Tip_Radius,
int Num_Layers,
const double* Layer_Surface_Top,
const double* Layer_Surface_Bottom,
const int* Surface_Effect_Model_IDs,
const double* Pressure_Coefficient_1,
const double* Pressure_Coefficient_2,
const double* Pressure_Coefficient_3,
int Num_Body_Axis_Points,
CavityExpansion::CE_ERROR_CODE& error );

Definitions of the input parameters are given below.
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- The enumerate variable Type specifies the theory to use, and is one of the items in
the enumerated list CE_TYPE.

 enum CE_TYPE{ SPHERICAL, CYLINDRICAL };

- The integer Number_Faces is the number of faces to which the cavity expansion
pressure needs to be computed.

- The integer Number_Nodes is the number of nodes needed to describe the
connectivity for the faces.

- The array Connectivity describes the connectivity between the faces and the
nodes. The first four integers in the array describe the connectivity for face 1; the
second four integers describe the connectivity for face 2; and so forth. Only
quadrilateral faces are allowed for the description of the surface used for cavity
expansion.

- The real Tip_Radius gives the tip radius for the expansion radii described in
Section 2.2 and Section 2.3.

- The integer Num_Layers is the number of layers used to describe the target space.

- The real array Layer_Surface_Top gives the location of the top surface for each
of the Num_Layers layers.

- The real Layer_Surface_Bottom gives the location of the bottom surface for
each of the Num_Layers layers.

- The integer array Surface_Effect_Model_IDs is the list of integer identifiers
for the surface effect model for each layer. A value of zero indicates that no surface
effect is to be used for this layer.

- The real array Pressure_Coefficient_1 gives the pressure_coefficient_1 (

in Equation 1 of Section 2.1) for each of the Num_Layers layers.

- The real array Pressure_Coefficient_2 gives the pressure_coefficient_2 (

in Equation 1 of Section 2.1) for each of the Num_Layers layers.

- The real array Pressure_Coefficient_3 gives the pressure_coefficient_3 (

in Equation 1 of Section 2.1) for each of the Num_Layers layers.

- The integer Num_Body_Axis_Points is the number of points that will be used to
describe the body axis. In version 1.0, this must be two (2). In future versions, we
will support an arbitrary number of body axis points so the analysts can better
resolve the body axis.

3.2 Adding Surface Effect Models
Surface effect models are added using the function Add_Surface_Effect_Model. The
prototype for this function is as follows:

CE_ERROR_CODE

c0

c1

c2
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CavityExpansion::Add_Surface_Effect_Model(
CE_SURFACE_EFFECT_TYPE type,
int ID,
double* params );

Definitions of the input parameters are given below.

- The enumerated variable type specifies the surface effect model to use, and is one
of the items from the enumated list CE_SURFACE_EFFECT_TYPE.

enum CE_SURFACE_EFFECT_TYPE{ NONE=0, SIMPLE_ON_OFF};

- The integer ID is a POSITIVE integer for this model. This ID is used to connect the
models to the layers. The ID used here should appear in the array
Surface_Effect_Model_IDs used to create the cavity expansion object.

- The array params is a real array of parameters that is dependent on the model type.
The array params is dimensioned so that it will hold all of the parameters used in
the surface effects model. For the SIMPLE_ON_OFF model, there are four
parameters:

param[0]= free-surface top

param[1]= free-surface bottom

param[2]= free-surface top coefficient

param[3]= free-surface bottom coefficient

See Section 2.4 for a description of the parameters for the SIMPLE_ON_OFF model.

3.3 Initializing the CavityExpansion Object
Cavity expansion must be initialized before calling Compute_Forces (Section 3.4) and
after adding all of the surface effect models. The initialization phase connects the layers
and the surface effect models, precomputes the expansion radii, and sets up the memory
for the object that will be needed in Compute_Forces.

The prototype for the initialization is as follows:

CE_Error_Code
CavityExpansion::Initialize(

const double* coordinates,
const double* body_axis_points);

Definitions of the input parameters are given below.

- The real array coordinates is an array of initial coordinate positions ordered (x,
y, z) for node 1, (x, y, z) for node 2, and so forth.

- The real array body_axis_points is an array of positions ordered (x, y, z) for
body axis node 1, (x, y, z) for body axis node 2, and so forth.
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3.4 Computing Nodal Forces
The nodal forces exerted by the target on the penetrator are computed in
Compute_Forces. The prototype for this function is as follows:

CE_Error_Code
CavityExpansion::Compute_Forces(

const double* coordinates,
const double* velocities,
const double* body_axis_points,
double* forces );

Definitions of the input parameters are given below.

- The real array coordinates is an array of current nodal positions ordered (x, y, z)
for node 1, (x, y, z) for node 2, and so forth.

- The real array velocities is an array of velocities ordered (x, y, z) for node 1, (x,
y, z) for node 2, and so forth.

- The real array body_axis_points is an array of positions ordered (x, y, z) for body
axis node 1, (x, y, z) for body axis node 2, and so forth.

- The real array forces contains the nodal forces exerted by the target on the
penetrator nodes. The array forces is returned on exit from this function. Because
the array is zeroed upon entering the function, the array CANNOT be used for
accumulating the nodal forces.
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4 Verification
This section describes the verification problems that are used to test the functionality of
the CavityExpansion library. The current tests are listed below and discussed in detail in
Section 4.1 through Section 4.7.

• Block with spherical expansion, constant pressure coefficient only

• Block with spherical expansion, constant pressure and linear velocity terms only

• Block with cylindrical expansion, constant pressure coefficient only

• Block with cylindrical expansion, constant pressure and linear velocity terms only

• Block with spherical expansion, constant pressure, multiple layers

• Block with cylindrical expansion, constant pressure, multiple layers

• Block with spherical expansion, constant pressure, top and bottom on-off surface
effects

4.1 Block, Spherical CE, Constant Coefficient
Only

This verification problem uses a block with an initial velocity. The block impacts the
target and comes to rest after it penetrates the target by a certain distance due to a constant
pressure from a spherical cavity expansion boundary condition.

4.1.1 Capabilities Tested
This problem tests spherical expansion with a constant pressure coefficient term only.
Only the  term in Equation (1) is nonzero. Calculation of the spherical normal and a

constant pressure is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.

4.1.2 Mechanics of Problem
This problem uses a 1-inch × 1-inch × 1-inch block made of steel. Steel has a mass density

of . The block has an initial velocity of 100 in/sec in the negative z-

direction (Figure 4.1). The bottom of the block is initially at , and the top of the

block is initially at . The block strikes the target at time . Only the constant

term, , in the quadratic equation used for cavity expansion is set to a nonzero value of

7.324 psi.

c0

7.324 10 4–× lbm/in3

z 0=

z 1= t 0=

c0
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Figure 4.1. Block and target geometry.

The mesh used in this verification problem is a 2 × 2 × 2 element block constructed of
eight-node hexahedral elements. One edge of the block lies along the positive x-axis, one
edge lies along the positive y-axis, and a third lies along the positive z-axis. There are
planes of interior nodes at inch, inch, and inch. The exterior

faces of the elements are  inch ×  inch,  inch ×  inch, and  inch ×
inch. The symmetry boundary condition is used on the plane , and the

symmetry boundary condition  is used on the plane .

4.1.3 Analytic Results
The result of setting only the constant term in the quadratic equation for cavity expansion
to a nonzero value is a constant pressure over time on the bottom surface of the block. The
acceleration of the block, once it strikes the target, can be easily computed from the
equation

, (17)

where F is the force on the block due to the constant pressure term and M is the total mass
of the block. By integrating Equation (17) with respect to time, one obtains the velocity of
the block as a function of time as

, (18)

where is the initial velocity of the block. By integrating once more with respect to time,

one obtains the displacement of the block as a function of time as

, (19)

where it is assumed that the initial displacement for any point on the block is zero. The
block is at rest when the velocity v is zero. The time at which the block comes to rest is

x
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. (20)

Substituting the value for the time at which the velocity is zero, , into Equation (19)

gives the depth of penetration of the block into the the target.

For a block with unit dimensions, the total force on the block is 7.324 lb since the value

for  is 7.324 psi and the cross-sectional area of the block is . Since the block is

steel with a mass density of , the total mass of the block is

 lbm. The time at which the block comes to rest is  sec; the block

penetrates the target to a depth of  inch.

4.1.4 Comparison of Analytic and Computed Results
The cross-sectional area of the block will deform slightly due to Poisson effects as the
block contacts the target. However, this effect is very small, and the cross-sectional area of

the block can be treated as constant ( ) over the period in which the block contacts the
target and comes to rest. The block should follow the analytic behavior closely. Figure 4.2
shows the displacement as a function of time for any point on the block. For node 1
(located at , , and ), the predicted displacement in the z-direction at

time  sec is  inch. This result is from Alegra. The numerical
and analytic results show good agreement.

t f v0 M F⁄( )–=

t f

c0 1 in2
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Figure 4.2. Displacement as a function of time for block impacting
target; spherical expansion, constant pressure term only.

4.2 Block, Spherical CE, Constant and Linear
Coefficients

This verification problem uses a block with an initial velocity. The block impacts the
target and comes to rest after it penetrates the target by a certain distance due to a pressure
from a spherical cavity expansion boundary condition. This problem is the same as the
problem presented in Section 4.1, except that the pressure in this problem includes that
due to the linear velocity term in addition to the constant pressure term.

4.2.1 Capabilities Tested
This problem tests spherical expansion with a constant coefficient pressure term and the
pressure term that is linear in the velocity. Both the  and  terms in Equation (1) are

nonzero for this problem; the term in Equation (1) is zero for this problem. Calculation

of the spherical normal and the pressure with constant and linear terms is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.2.2 Mechanics of Problem
The mechanics of this problem is the same as that for the problem presented in Section
4.1, except that this problem has a nonzero value for in addition to a nonzero value for

. The pressure on the block arises not only from the constant pressure term but also from

the linear velocity term. The value for the coefficient  is set to .

4.2.3 Analytic Results
For this particular verification problem, the motion of the block is described by the
differential equation

, (21)

where M is the total mass of the block and u is the displacement of the block. Since we are
working with unit areas for the surface of the block, the terms on the right-hand side in
Equation (21) represent force terms. Equation (21) is rewritten is a differential equation
with the homogeneous solution

(22)

and the particular solution

, (23)

where A and  are constants determined from initial conditions. The initial conditions

are that the displacement of the block is zero and the initial velocity is  at . The

initial conditions yield

(24)

and

, (25)

which results in

(26)

as the expression for the displacement as a function of time. The block is at rest when
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, (27)

which occurs at time

. (28)

By substituting the value for into Equation (26), one can obtain the displacement for the

block at the point where it is at rest in the target.

For a total mass of 1 lbm, an initial velocity of 100 in/sec in the minus z-direction, and

values of  and  for  and , respectively, the time at

which the block comes to rest is  sec. The block penetrates the target to a

depth of  inch.

4.2.4 Comparison of Analytic and Computed Results
The cross-sectional area of the block will deform slightly due to Poisson effects as the
block contacts the target. However, this effect is very small, and the cross-sectional area of

the block can be treated as constant ( ) over the period in which the block contacts the
target and comes to rest. The block should follow the analytic behavior closely. Figure 4.3
shows the displacement as a function of time for any point on the block. For node 1
(located at , , ), the predicted displacement in the z-direction at the time

the block comes to rest (  sec) is  inch. This result is
from Alegra. The numerical and analytic results show good agreement (within 0.055%).
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Figure 4.3. Displacement as a function of time for block impacting
target; spherical expansion, constant pressure and linear velocity
terms only.

4.3 Block, Cylindrical CE, Constant Coefficient
Only

This verification problem uses a block with an initial velocity in the x-direction. The block
is embedded in the target and comes to rest after a certain distance due to a constant
pressure from a cylindrical cavity expansion boundary condition. The nature of cylindrical
expansion requires that the block be embedded in the target and moved in a direction
orthogonal to the z-axis, which is the assumed target normal.

4.3.1 Capabilities Tested
This problem tests cylindrical expansion with a constant pressure coefficient term only.
Only the  term in Equation (1) is nonzero. Calculation of the cylindrical normal and a

constant pressure is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.3.2 Mechanics of Problem
This problem uses a 1-inch × 1-inch × 1-inch block made of steel. Steel has a mass density

of . The block has an initial velocity of 100 in/sec in the positive x-

direction. The bottom of the block is initially at , and the top of the block is initially

at . The top of the target is at  inches, and the bottom of the target is at

inches. The block is embedded in the target. A pressure is applied to the block in
the minus x-direction beginning at time zero due to cylindrical cavity expansion. Only the
constant term, , in the quadratic equation used for cavity expansion is set to a nonzero

value; the constant term is set to 7.3324 psi.

The mesh used in this verification problem is a 2 × 2 × 2 element block constructed of
eight-node hexahedral elements. One edge of the block lies along the positive x-axis, one
edge lies along the positive y-axis, and a third lies along the positive z-axis. There are
planes of interior nodes at inch, inch, and inch. The exterior

faces of the elements are  inch ×  inch,  inch ×  inch, and  inch ×
inch. The symmetry boundary condition is used on the plane , and the

symmetry boundary condition  is used on the plane . Node 7, which is

located at , , and , is used to track the motion of the block.

4.3.3 Analytic Results
The result of setting only the constant term in the quadratic equation for cavity expansion
to a nonzero value is a constant pressure over time on the surface of the block with a
normal in the x-direction. The acceleration of the block beginning at time  can be
easily computed from the equation

, (29)

where F is the force on the block due to the constant pressure term and M is the total mass
of the block. By integrating Equation (29) with respect to time, one obtains the velocity of
the block as a function of time as

, (30)

where is the initial velocity of the block. By integrating once more with respect to time,

one obtains the displacement of the block as a function of time as

, (31)

where it is assumed that the initial displacement for any point on the block is zero. The
block is at rest when the velocity v is zero. The time at which the block comes to rest is
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. (32)

Substituting the value for the time at which the velocity is zero, , into Equation (32)

gives the depth of penetration of the block into the the target.

For a block with unit dimensions, the total force on the block is 7.324 lb since the value

for is 7.324 psi and the cross-sectional area of the block is . Since steel has a mass

density of , the total mass of the block is lbm. The time

at which the block comes to rest is  sec; the block moves a distance of 0.5 inch
through the target in the x-direction.

4.3.4 Comparison of Analytic and Computed Results
The cross-sectional area of the block will deform slightly due to Poisson effects as the
block moves through the target. However, this effect is very small, and the cross-sectional

area of the block can be treated as constant ( ) over the period in which the block is
moving through the target. The block should follow the analytic behavior closely. Figure
4.4 shows the displacement as a function of time for any position on the block. For node 7

(located at , , ), the predicted displacement at time sec

is  inch. This result is from Alegra. The numerical and analytic results show
good agreement.
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Figure 4.4. Displacement as a function of time for block moving
through target; cylindrical expansion, constant pressure term
only.

4.4 Block, Cylindrical CE, Constant and Linear
Coefficients

This verification problem uses a block with an initial velocity in the x-direction. The block
is embedded in the target and comes to rest after a certain distance due to a pressure from
a cylindrical cavity expansion boundary condition. This problem is the same as the
problem presented in Section 4.3, except that the pressure in this problem includes that
due to the linear velocity term in addition to the constant pressure term. The nature of
cylindrical expansion requires that the block be embedded in the target and moved in a
direction orthogonal to the z-axis, which is the assumed target normal.

4.4.1 Capabilities Tested
This problem tests cylindrical expansion with a constant pressure coefficient and the
pressure term that is linear in the velocity. Both the  and  terms in Equation (1) are

nonzero for this problem; the term in Equation (1) is zero for this problem. Calculation

of the spherical normal, the cylindrical normal, and the pressure with constant and linear
terms is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.4.2 Mechanics of Problem
The mechanics of this problem is similar to that for the problem presented in Section 4.3,
except that this problem has a nonzero value for  in addition to a nonzero value for .

The pressure on the block arises not only from the constant pressure term but also from the
linear velocity term. The determination of the pressure due to the linear velocity term is
slightly more complicated than that for the analogous spherical cavity expansion problem
described in Section 4.2. To determine the pressure arising from the linear velocity term,
consider the block geometry with normals shown in Figure 4.5.

Figure 4.5. Normals for block for cylindrical expansion.

The velocity v used to calculate the pressure from the velocity at the node  is given by

, (33)

where  is the spherical normal at the node and  is the cylindrical normal at the node.

For this particular problem, the body axis for the block lies along the z-axis. Although the
spherical normals are all the same for the faces of interest for this problem (1, 0, 0), the
cylindrical normals vary with the location of the nodes. For the nodes located at ,

the cylindrical normals of interest are (1, 0, 0), and the product is 1.0. For the nodes

located at , the cylindrical normals of interest are ( , , 0),

and the product   is . For the nodes located at , the cylindrical

normals of interest are ( , , 0), and the product  is . If  is the

velocity along the face at at any instant, we can approximate the pressure along this
face as a function of y with a simple quadratic as
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. (34)

If we integrate the function for pressure over the face of the block normal to the x-
direction from  to  and from  to , then the total force on the

block normal to the x-direction is .

If the value of the coefficient  is set to , which is 0.063610, then the

force in the x-direction as a function of time will be the same as that for the spherical
expansion problem in Section 4.2, and the behavior for this problem will be the same as
that for the problem in Section 4.2. For the problem in Section 4.2, the value for  is

.

4.4.3 Analytic Results
For this particular verification problem, the motion of the block is described by the
differential equation

, (35)

where M is the total mass of the block and u is the displacement of the block. Since we are
working with unit areas for the surface of the block, the terms on the right-hand side in
Equation (35) represent force terms. As indicated in the previous section, however, the
value for  must be adjusted to account for the geometry and configuration of the

cylindrical normals in order to use  directly as a force term. Equation (35) is

rewritten is a differential equation with the homogeneous solution

(36)

and the particular solution

, (37)

where A and  are constants determined from initial conditions. The initial conditions

are that the displacement of the block is zero and the initial velocity is  at . The

initial conditions yield

(38)

and
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, (39)

which results in

(40)

as the expression for the displacement as a function of time. The block is at rest when

, (41)

which occurs at time

. (42)

By substituting the value for into Equation (40), one can obtain the displacement for the

block at the point where it is at rest in the target.

For a total mass of 1 lbm, an initial velocity of 100 in/sec in the minus z-direction, and

values of 7.324 psi and  for  and , respectively, the time at which

the block comes to rest is  sec. The block moves through the target a

distance of  inch.

4.4.4 Comparison of Analytic and Computed Results
The cross-sectional area of the block will deform slightly due to Poisson effects as the
block moves through the target. However, this effect is very small, and the cross-sectional

area of the block can be treated as constant ( ) over the period in which the block is
moving through the target. The block should follow the analytic behavior closely. Figure
4.6 shows the displacement for any point as a function of time for any point on the block.
For node 7 (located at , , ), the predicted displacement at time

 sec is 0.3049608 inch. This result is from Alegra. The numerical and
analytic results show good agreement.
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Figure 4.6. Displacement as a function of time for block moving
through target; cylindrical expansion, constant pressure and linear
velocity terms only.

4.5 Block, Spherical CE, Constant Coefficients,
Multiple Layers

This verification problem uses a block with an initial velocity. The block impacts the
target and comes to rest after it penetrates the target by a certain distance due to a pressure
from a spherical cavity expansion boundary condition. This problem is the same as the one
described in Section 4.1, except that the problem in this section (Section 4.5) uses three
layers rather than one layer to describe the layer structure inside the target. For this
particular problem, all layers have the same properties. The behavior for this problem is
exactly the same as that for the problem in Section 4.1.

4.5.1 Capabilities Tested
This problem tests spherical expansion with a constant pressure coefficient only and
multiple layers inside the target. Calculation of the spherical normal and the pressure for a
multilayer problem is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.5.2 Mechanics of Problem
The mechanics for this problem is the same as that defined in Section 4.1.2, except that
this problem uses three layers instead of one inside the target. For all layers, the value for

 is 7.324 psi.

The layers range from  inch to  inch, from  inch to

inch, and from inch to inch. The block passes completely through the

first two layers and comes to rest in the third layer ranging from  inch to

 inch.

4.5.3 Analytic Results
The analytic results for this problem can be obtained by using the results in Section 4.1.3.

4.5.4 Comparison of Analytic and Computed Results
Computed results for this problem compare to the results shown in Figure 4.2. For node 1
(located at , , ), the predicted displacement in the z-direction at time

 sec is  inch. This result is from Alegra. The numerical and
analytic results show good agreement.

4.6 Block, Cylindrical CE, Constant Coefficients,
Multiple Layers

This verification problem uses a block with an initial velocity. The block moves through
the target and comes to rest after a certain distance due to a pressure from a spherical
cavity expansion boundary condition. This problem is the same as the one described in
Section 4.3, except that the problem in this section (Section 4.6) uses two layers rather
than one layer to describe the layer structure inside the target. For this particular problem,
both layers have the same properties. The behavior for this problem is exactly the same as
that for the problem in Section 4.3.

4.6.1 Capabilities Tested
This problem tests cylindrical expansion with a constant pressure coefficient only and
multiple layers inside the target. Calculation of the spherical normal and the pressure for a
multilayer problem is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.6.2 Mechanics of Problem
The mechanics for this problem is the same as that defined in Section 4.3.2, except that
this problem uses two layers instead of one layer inside the target. For both layers, the
value for  is 7.324 psi.

The layers range from  inches to  inch and from  inch to

inches. Since the top of the block is at inch and the bottom of the block

is at  inch, the block is in both layers. The block remains in both layers since the
motion of the block is in the x-direction.

4.6.3 Analytic Results
The analytic results for this problem can be obtained by using the results in Section 4.3.3.

4.6.4 Comparison of Analytic and Computed Results
Computed results for this problem compare to the results shown in Figure 4.4. For node 7
(located at , , ), the predicted displacement in the x-direction at time

 sec is  inch. This result is from Alegra. The numerical and
analytic results show good agreement.

4.7 Block, Spherical CE, Constant Pressure,
Surface Effects

This verification problem uses a block with an initial velocity. The block impacts the
target and experiences a constant pressure due to a cavity expansion boundary condition.
Only the term in Equation (1) is nonzero. A surface effect coefficient, the scale factor

in Equation (15), is specified for a top on-off surface effect and for a bottom on-off surface
effect. The top surface effect coefficient does not influence the motion of the block as it
impacts the surface because the normals for the faces on the bottom of the block are
opposite to the surface normal for the target. For the on-off surface effect to be enforced
for a given face, the normal to the face and the target surface normal of interest (lower- or
upper-target surface normal) must first have components in the same direction. The
bottom surface of the target and the bottom surface effect coefficient are set so that the
bottom surface effect does influence the motion of the block. The bottom surface effect is
such that, at some depth of penetration of the block, the bottom surface effect turns off the
pressure on the block, and the block continues its motion at a constant velocity.

4.7.1 Capabilities Tested
This problem tests spherical expansion with a constant pressure coefficient only and top
and bottom surface effects.
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Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.

4.7.2 Mechanics of Problem
This problem uses a 1-inch × 1-inch × 1-inch block made of steel. Steel has a mass density

of . The block has an initial velocity of 100 in/sec in the negative z-

direction. The bottom of the block is initially at , and the top of the block is initially

at . The block strikes the target at time . Only the constant term, , in the

quadratic equation used for cavity expansion is set to a nonzero value; the constant term is
set to 7.324 psi.

A value of 10.0 is used to specify the scale factor for the top surface effect. The top surface
effect never influences the motion of the block because the normals on the bottom surface
of the block (which are given by (0, 0, –1)) are in the opposite direction of the normal to
the top surface of the target, which is given by (0, 0, 1). A value of 10.0 is also used to
specify the scale factor for the bottom surface effect. The bottom surface of the target is set
to  inches, and the bottom of the layer in the target is set at  inch. The
tip radius is set to 0.01 inch. When the bottom surface of the block has penetrated to a
depth of inch, the bottom surface effect turns off the constant pressure term. The

distance l (see Section 2.4) to the bottom of the layer when inch is 0.1 inch. The

scale factor of the bottom surface effect, , times the tip radius, r, gives a value of 0.1 inch

(  inch). Once the block displacement is greater than , the

relation given in Equation (15) of Section 2.4 ( ) is no longer satisfied, and the

pressure due to cavity expansion is set to zero. The velocity at this point remains constant,
and the displacement of any point on the block is described by a linear function.

The mesh used in this verification problem is a 2 × 2 × 2 element block constructed of
eight-node hexahedral elements. One edge of the block lies along the positive x-axis, one
edge lies along the positive y-axis, and a third lies along the positive z-axis. There are
planes of interior nodes at inch, inch, and inch. The exterior

faces of the elements are  inch ×  inch,  inch ×  inch, and  inch ×
inch. The symmetry boundary condition is used on the plane , and the

symmetry boundary condition  is used on the plane .

4.7.3 Analytic Results
The result of setting only the constant term in the quadratic equation for cavity expansion
to a nonzero value is a constant pressure over time on the bottom surface of the block. The
acceleration of the block, once it strikes the target, can be easily computed from the
equation

7.324 10 4–× lbm/in3

z 0=

z 1= t 0= c0
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f s
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, (43)

where F is the force on the block due to the constant pressure term and M is the total mass
of the block. By integrating Equation (43) with respect to time, one obtains the velocity of
the block as a function of time as

, (44)

where is the initial velocity of the block. By integrating once more with respect to time,

one obtains the displacement of the block as a function of time as

, (45)

where it is assumed that the initial displacement for any point on the block is zero. The
pressure on the block becomes zero when the block penetrates the target by a certain depth

 because of the bottom surface effect. The time  at which  is reached is the

appropriate root of

. (46)

The final velocity for the block is

, (47)

and the displacement of the block for any time  is

. (48)

For this particular problem, the block displaces by 0.4 inch into the target at time

 sec and has a velocity of  in/sec. By using Equation

(48), the predicted displacement at time sec, the termination time for the

problem, should be  inch.

4.7.4 Comparison of Analytic and Computed Results
The cross-sectional area of the block will deform slightly due to Poisson effects as the
block contacts the target. However, this effect is very small, and the cross-sectional area of

the block can be treated as constant ( ) over the period in which the block contacts the
target and comes to rest. The block should follow the analytic behavior closely. Figure 4.7
shows the displacement as a function of time for any point on the block. For node 1
(located at , , ), the predicted velocity when the block penetrates to a
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depth of –0.4 inch is –44.7203 in/sec. For node 1, the predicted displacement in the z-

direction at time  sec is –0.62239 inch. This result is from Alegra. The
numerical and analytic results show good agreement.

Figure 4.7. Displacement as a function of time for block impacting
target; spherical expansion, constant pressure term only, simple on-
off surface effects.
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44

5 Validation
Cavity expansion has been validated as an analysis tool by comparing numerical and
experimental results for a number of problems. Validation results are given in References
11, 14, 15, and 16.
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Appendix A: Basic Algorithmic Flow
The basic algorithmic flow used for the implementation of cavity expansion is given
below.

Collect input information
Type of cavity expansion (spherical or cylindrical)
Target normal axis (X, Y, or Z)
Free surface top location
Free surface bottom location
Layer surface top location
Layer surface bottom location
Pressure coefficients c0, c1, c2
body axis point 1
body axis point 2

Compute current body axis orientation: A = p1 - p2

Loop over faces defining surface with cavity expansion
effects

Collect information for nodes defining faces

Compute spherical normal to face

Loop over nodes defining face

pressure = 0.0

If node is within layer

Vs = v dot ns

If SPHERICAL cavity expansion

If Vs > tolerance

pressure = c0 + c1 Vs + c2 Vs Vs

If top surface effect = true and normal pointing to
top free surface

If l/r < fs, pressure = 0

Endif test on top free surface

If bottom surface effect = true and normal pointing
to bottom free surface

If l/r < fs, pressure = 0

Endif test on bottom free surface

Endif test on Vs
Endif test for SPHERICAL expansion

If CYLINDRICAL cavity expansion
47



Compute Vc

Comnpute dot_normals = nc dot ns

If dot_normals > tolerance

Vc = Vs x dot_normals

If Vc > tolerance

pressure = c0 + c1 Vc + c2 Vc Vc

If top surface effect = true and normal pointing
to top free surface

If l/r < fs, pressure = 0

Endif test on top free surface

If bottom surface effect = true and normal
pointing to bottom free surface

If l/r < fs, pressure = 0

Endif test on bottom free surface

Endif test on Vc

Endif test on dot_normals

Endif test for CYLINDRICAL expansion

Endif test to determine node in layer

End loop over nodes on face

Calculate nodal forces at each node on face from pressure
distribution.

End loop over faces

Sum element node forces into global force array

End cavity expansion calculations.
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